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Abstract The phase transitions of RbNO3 and the binary

phase diagram of (Cs,Rb)NO3 were investigated at atmo-

spheric pressure, using simultaneous direct and differential

thermal analysis, lDTA and DSC techniques. A fourth

phase transition of RbNO3 has been observed at tempera-

ture near the melting point. The phase diagram of this

system is characterised by a eutectic, two eutectoid and an

azeotropic-like invariants. Three limited solid solutions and

two continuous solid solutions have been detected at low

temperature.
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Introduction

Molten salt systems involving alkali nitrates are widely

used in several fields (technical processes, energy storage,

electrochemical and chemical applications…). Thus,

knowledge of their thermodynamic properties and their

phase diagrams contributes to give information for their

use.

Complete phase diagram of the CsNO3–RbNO3 system

has never been reported in literature. Wallerant [1], Blidin

[2] (Fig. 1a) studied only the liquidus in a range of compo-

sition close to RbNO3. Protsenko and Belova [3] considered

this system as forming a continuous series of solid solutions

with a minimum at 290 �C. Khovokov and Eumoe [4]

(Fig. 1b), working on the liquid–solid equilibria of this

system, reported the presence of a minimum at 80 mol.%

RbNO3 and 288 �C. Secco and Secco [5] (Fig. 1c), showed

an incomplete phase diagram and estimated the limit of the

stability domains of the solid phases by discontinuous lines

but indexation they reported is not coherent.

Moreover, there is a divergence concerning the tem-

perature transformations of pure nitrates and the number of

polymorphic varieties of RbNO3. In the majority of the

literature data, RbNO3 exhibits at atmospheric pressure

four polymorphic forms between room temperature until

melting point, which are as follows:

IV að Þ ! III bð Þ ! II cð Þ ! I dð Þ

The low temperature form, RbNO3 (a), has a trigonal

structure [6–10], RbNO3 (b) is cubic [6–9, 11]. There are

some controversies about the structure of RbNO3 (c). Three

different suggestions were reported: trigonal [12–14],

tetragonal [6] and cubic [7, 11]. RbNO3 (d) has been

reported to have a cubic structure [6, 7, 9, 11].

According to several authors, the temperature of the first

transition (a/b) lies in the 160–167 �C range [6, 7, 15–24],

the b/c transition appears in 218–229 �C range [6, 7, 15–

23]. Freeman and Anderson [24] reported 236 �C for that

transition, whereas the third one (c/d), lies in the

280.5–291 �C range [6, 7, 15, 17–24].

Only Freeman and Anderson [24] reported in 1963 that

RbNO3 exhibits a fifth allotropic form (k). According to

these authors the fourth phase transition (d/k) appeared at
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302 �C and involved a very small heat change estimated as

209 J/mol.

In 1998, Chary and Reddy [10] reported an abrupt

change in the conductivity of crystal RbNO3 at a temper-

ature close to the melting point. This suggested the exis-

tence of a new phase transition. This transition has not been

mentioned in the previous published phase diagrams

involving RbNO3.

The melting point reported by several authors is in the

range 310–317 �C [4, 6, 15–22, 25–30].

Enthalpy of the first transition (a ? b) has been reported

between 3715 and 4000 J/mol [5, 17, 22, 23, 31–34]. That of

the second one (b ? c) lies in 2321–3290 J/mol range

[17, 22, 23, 31–34]. Values of the third transition (c ? d)

were in 958–1740 J/mol range [17, 22, 23, 31–34].

Whereas, the heat of melting lies in the range of

4600–5600 J/mol [5, 22, 35].

According to literature, CsNO3 has two polymorphic

forms at atmospheric pressure. At room temperature,

CsNO3 has a trigonal structure (a) [36, 37] which trans-

forms into cubic one (b) in the range 151–161 �C [5, 15,

16, 18, 36, 38–49]. Most of the melting temperatures are in

the range 404–411.7 �C [4, 5, 15, 25–28, 38–40, 42–44,

47–52]. Bol’shakov et al. [46, 47] reported the value of

414 �C, whereas Kleppa and McCarty [29] and Shenkin

[30] gave 417 �C.
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Experimental

In order to precise at atmospheric pressure the number of

polymorphic varieties of RbNO3 we used a simultaneous

direct and differential thermal analysis technique. The

device was already described in details in previous works

[38, 39, 53]. It consists of an Adamel-Lhomargyam furnace

connected to a Setaram PRT 540 C regulator-programmer

of temperature, that allows to select a cooling or a heating

rate between 0.35 and 10 �C min-1. The furnace is pro-

vided with a metallic block with two symmetrical cavities

for platinum crucibles of 3 cm3 capacity. The external

diameter of the block was a few millimetres smaller than

the furnace, thus limiting the convection current around the

test tubes, improving the heat transfer and making the

thermal flow propagation homogeneous. Two thin-walled

platinum crucibles were used with glove fingers for

Chromel–Alumel thermocouples. The latter also act as

crucible holders. Electrical and thermal isolation between

the sample and the reference was ensured by two quartz

tubes surrounding the crucibles. A (AOIP: P12) potenti-

ometer connected to a direct current power source and to a

highly sensitive ‘‘Keithley 191’’ multimeter was

used to detect electromotive force from the sample

thermocouple.

The phase transitions of RbNO3 were detected using a

lDTA device which has been described in a previous paper

[54]. DSC measurements were performed using a Mettler-

Toledo DSC822e. Platinum sample pans were used for

these experiments.

DTA, lDTA and DSC devices were calibrated with high

purity NaNO3, KNO3, Sn, Zn and In, respectively.

Heating and cooling rates were about 2 �C min-1 for the

first cycle and they were reduced at 0.5�C min-1 for the

next cycles and sometimes to about 0.37 �C min-1 in order

to avoid the overlapping which was often encountered with

the mixtures having molar composition in the range

0� xCsNO3
� 0:1.

Accuracy of temperature measurements is about 1 �C

for the DTA, lDTA and DSC. Accuracy of DSC enthalpies

is about 5%.

For the study of RbNO3 phase transitions, we used

different purities: 99.99, 99.7 wt% from Aldrich Chemical

Co. and 99.975 wt% from Alfa Aesar.

(Cs,Rb)NO3 phase diagram was drawn using CsNO3 and

RbNO3 99.99 wt% purity (Aldrich Chemical Co). They

were used without further purification, but dried for more

than 24 h at 107 �C in an oven. The samples were prepared

by intimately mixing various amounts of CsNO3 and

RbNO3 in a platinum crucible. In order to get homoge-

neous mixtures without decomposition, the mixtures

(2.5 g) were previously melted several times at a temper-

ature a few degrees over the melting point.

Results and discussion

For CsNO3, the solid state transition temperature is

(156 ± 1) �C. Melting point is (409 ± 1) �C. These values

are in the range of the most of the results published

previously.

RbNO3 exhibits four polymorphic phase transitions in

the solid state. These transitions have been shown using

different techniques and samples having 99.99, 99.975 and

99.7 wt% purity. The results are gathered in Table 1.

Considering certain purity, the temperature values of the

transitions and the melting point are close to each other

whatever the technique used. However, our results agree

with those of literature, except for the (b/c) transition

RbNO3 with 99.975 wt% purity. Measurements of this

temperature exceed slightly the upper limit of the range of

literature values, except the Freeman’s value which is

higher than our’s (236 �C) but only the temperature of the

fourth transition (d/k) of RbNO3 with 99.99 wt% purity, is

higher than the Freeman’s value [24] (302 �C).

Moreover it should be noticed that this transition point

(d/k) depends considerably on the purity of the nitrate. The

temperature of this transition is near the melting point

when the purity is high (99.975 and 99.99 wt%), and

decreases when the purity decreases (99.7 wt%).

Values for melting point found in the present work for

RbNO3 ((313 ± 1) �C) are in good agreement with the

literature results.

Enthalpies associated to these phase transitions and to

the melting of RbNO3 are gathered in Table 2.

It should be noticed that the heats involved in the four

transitions and in fusion of the 99.7 wt% purity RbNO3 are

higher than those with the other purities (99.975 and

99.99 wt%).

The enthalpies of the first phase transition for RbNO3

with 99.975 and 99.99 wt% purities are slightly less than

the lower limit of the literature range. The enthalpies of the

second and the third transitions are in good agreement with

the literature values. However, the 99.99 wt% sample

exhibit an enthalpy of the new phase transition higher than

the value estimated by Freeman and Anderson [24].

Table 1 Temperatures of the solid–solid phase transitions and of the

melting of RbNO3

Technique DTA DSC DTA DSC lDTA DSC

Purity/wt% 99.99 99.99 99.975 99.975 99.7 99.7

T (a/b)/�C 166 164.6 164 163.7 164.1

T (b/c)/�C 228 227.3 233.5 230.3 222 220.4

T (c/d)/�C 287 284.7 285 285.8 285.5 283.2

T (d/k)/�C 311 309.7 293 294.2 291 290.9

Tfus/�C 314 313.9 314.5 313.4 310 311.8
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Attempts to measure the heat involved by that transition

with (99.7 wt%) purity sample were not successful.

Concerning the heat of melting, one can notice that

except for the RbNO3 having the lower purity (99.7 wt%),

our data are smaller.

Figure 2 shows the obtained phase diagram which is

characterised by three reduced solid solutions, a eutectic point

at 291 �C and 82.5 mol.% RbNO3, corresponding to

liquid = bCsxRb1-xNO3 ss ? kCsxRb1-xNO3 ss, a eutectic

plateau at 291 �C, two eutectoid points at (87 mol.% RbNO3,

290 �C) and at (89.5 mol.% RbNO3, 272 �C), corresponding

tokCsxRb1-xNO3 ss = bCsxRb1-xNO3 ss ? dCsxRb1-xNO3 ss

and dCsxRb1-xNO3 ss = cCsxRb1-xNO3 ss ? bCsxRb1-x

NO3 ss, respectively, an eutectoid plateau at 290 �C, an another

eutectoid plateau at 272 �C, an azeotrope-like point at

(35 mol.% RbNO3, 148 �C) with the reaction bCsxRb1-x

NO3 ss = aCsxRb1-xNO3 ss and two solid solutions

aCsxRb1-xNO3 ss and bCsxRb1-xNO3 ss involving (aCsNO3

and aRbNO3) and (bCsNO3 and bRbNO3), respectively.

As a concluding remark, a fourth phase transition of

RbNO3 has been detected for the second time. The tem-

perature of this transition depends considerably on the

purity of the nitrate. The binary system caesium nitrate–

rubidium nitrate studied at atmospheric pressure, by using a

simultaneous direct and differential thermal analysis tech-

nique, showed a eutectic, two eutectoid points, a minimum

and two continuous solid solutions.
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